Teaching a Neural Network to Play 2048 (+ cat)

Angela Qian
Certified PHcker .h
qian220@purdue.edu

Abstract

I decided to teach a neural network to play 2048, despite knowing very little about
how to actually do that. This work represents a comprehensive summer-long case study
employing the experimental methodology colloquially known as “fuck around and
find out,” formalized here as an iterative process of unstructured empirical exploration
punctuated by intermittent bursts of ideas that appeared to me in my dreams. Despite

training on a barely adequate dataset and a general disregard for best practices in

machine learning, the project yielded a partially functional model that occasionally

achieves non-embarrassing results. Future work will focus on replacing my uneducated,

half-baked ideas with something vaguely resembling standard practice, as well as

examining the effects of reading at least one relevant paper before implementation.

1 TL;DR: I made an Al that plays 2048

I've been mildly (okay, extremely) obsessed with 2048 since
I was around ten years old. Funny tiles with big numbers
itches my brain really good. Anyways, 'm studying computer
science in college right now, and lately I've gotten interested in
machine learning. So I figured, why not combine the two?

2 Oops! I don’t know what I’'m doing

I got all hyped up about making a 2048 bot, but was quickly
brought back to the crushing reality that: I'm a stupid little
undergrad with a smooth little brain and do not know much
about machine learning.

I started looking into some machine learning techniques, and
the one that stood out to me most was imitation learning —
basically, monkey see, monkey do. The reason? I honestly just

7

Figure 1: Author’s artistic
interpretation of this project’
as a horse. Unclear if
author has ever seen a horse.

wanted to avoid the headache of coming up with a way to “quantify” or “rank” how good a move

is. With imitation learning, the model is given a bunch of state-action pairs (boards and their

corresponding moves), and learns to predict the next action from a given state.

3 What would I do? Let’s make the bot guess

Thanks to doing some undergrad research assistant stuff, I know that usually training these types of

models requires massive amounts of data. As in, hundreds or even thousands of games. So of course,

my first instinct is to search online for some pre-existing datasets I can use.

'This project can be found and played at https://angelazgian.github.io/2048-Al. Hopefully by the time you read this
paper, my models will be slightly more competent than they were when I wrote this.

mailto:qian220@purdue.edu
https://angelazqian.github.io/2048-AI

I I did manage to find some datasets of 2048 games online,
Game over! oo _
o but after digging into the stats, it turns out those players
You earned 1,809,300 points with s .
59,426 moves in 557:31. don’t perform nearly as well as I do. For reference, Figure 2
shows my highscore from last summer.

8192 16384 1 32768 || 65536 Not only did their games tend to end much earlier than
mine, looking through their gameplay, a lot of their moves
were less than strategic. And as the saying goes — if you
want something done right, do it yourself.

I ended up writing a small Python script that worked as a
keylogger. When run, it opens 2048 in my browser, and for
every move I make, the script saves the board state along

with the move into a JSON file. This also allowed me to
undo a move if I slipped up, so I didn’t end up logging “bad

Figure 2: My highscore

trom | moves” into the dataset. After collecting a staggering eight
rom last summer games (ok, not a lot lol but in my defense each game lasts
anywhere from half an hour to four hours and i didn’t have much free time since i was employed full-

time over the summer), it’s time to start training!

4 Forcing my model to see The Horrors

When looking into how to do imitation learning, the first method I came across was using Multilayer
Perceptrons (MLPs).? Essentially, it’s a type of neural network that processes multiple inputs, and
returns a single output. This seemed like a good solution, as I could use the 16 grids of the game board
as the input, then have it return the direction to move the tile in. I train it on the 8 games I have, load
the model into the game and... yeah it sucks. Half the moves it was making were things I would never
do. Back to the drawing board.

Maybe the problem lies with my data? When I play 2048, I tend to shove my big tiles in the top-right
corner, favoring the upper edge, as shown in Figure 3. This would be reflected in the dataset, since all
the collected games would follow the same pattern.

Since the model would have only learned to play well in the same orientation as me, when it loses that
structure, it struggles to recover. That’s also a problem if someone wanted to try playing the game
themself, then swap in the bot mid-way — their tile alignment may be different than mine. Even natural
gameplay sometimes shifts the board’s orientation over time. I duplicated my data to represent all 8
orientations (4 x 90° rotations, then 2 x for each mirror), as shown in Figure 4, and there is a slight
improvement, but it’s still comically bad.

rot0 rot90 rot180 rot270 High
Tiles
High
Tiles
— > — 3 — >
mir rot270
Low
Tiles
Figure 3: My preferred e
orientation Figure 4: All 8 possible orientations of the board

*MLP is also the acronym for “My Little Pony,” which is rather fitting considering this is an entry in SIGHORSE. I
thought this was hilarious so I have given my model a ponysona. See Figure 1.

After some thought, it occurred to me that treating each block in the grid as an independent parameter
doesn’t communicate any positional information, which is extremely important in 2048. To address
this, instead of treating the grid as 16 independent parameters, I started treating the grid as an image,
essentially implementing a rudimentary form of computer vision. I accomplished this by switching
from using MLPs to using a Convolutional Neural Network (CNN), which takes in a matrix input and
uses convolutional layers to produce a single output. Much better results! But still not nearly as good
as I had hoped.

5 Finetuning, but I am Woefully Uneducated

At this point I wanted to try finetuning my model, which means taking an existing trained model and
continuing to train it so it becomes better adapted for the task. I looked into some common finetuning
techniques, and the one that made the most sense to me was reinforcement learning through self-play,
since 2048 is a single player game where you can objectively tell how good a game was through the
final score. In reinforcement learning, each full playthrough of the game is called an episode, and after
each episode the model updates based on a reward function, which is basically a formula that tells the
model what counts as “good”. To encourage the model to be constantly improving instead of settling
for an okay-ish score, I defined the reward function as the difference between the latest episode’s score
and the average score of past episodes.

And... it gets worse. What.?

I’ll put this on the back burner for now and return to this later.

6 Making my model stop being Evil
The main issue about my model at this point is that it dies a lot early game, but if it somehow
survives past a certain point, it starts performing well, which I think is because of rotation noise. This
is because early on in the game, the model seems to execute moves from various rotations, as if it
can’t decide which one to follow, leading me to remove the early gameplay from all rotations. I also
noticed that when the board gains a large tile in a corner, it becomes ambiguous to the model as to
which orientation it should follow. Considering that one of the main rule-of-thumb’s when playing
2048 is that you should pick a direction, label it as “evil” and avoid it at all costs, this becomes
a bit of a problem. For example, if the ot0 mir 11270 High
largest tile is placed in the top-right corner, it e
could follow the orientation that favors the upper T

edge, designates down to be the “evil move”, and T
n.

mostly play moves up, right, and left. However,
it could also follow the orientation that favors the
right edge, designates left as the “evil move”,

Low
Tiles

and mOStly plaY moves r‘lg ht, dOWn, and Up. Good moves: up, right, left Good moves: right, up, down
Following this logic, all 4 directions may seem like Figure 5: Ambiguity leads to all four
reasonable moves to the model, which is very bad. directions being possible “good moves”

When playing 2048, it is good to choose one orientation and stick with it. However, sometimes a
mistake happens, and you are forced to switch orientations in order to recover. The most common type
of orientation change that happens mid-game is when you keep the same “evil move” and continue

*In the writing of this journal entry, I found out that my mistake was baking a moving baseline into the reward
function, which makes reward non-stationary. What I was previously using as the reward function was actually
something called the advantage (essentially how much better an action was than what the model usually expects).
However, that should be handled inside the learning algorithm, not included in the reward itself. What I should have
used here was a Deep Q-Network (DQN), which is designed to estimate long-term value for actions in each game state
and updates the model more reliably.

to favor the same edge, but switch to the other corner on the edge to keep the largest tiles. As an
example, in Figure 6, the “evil move” continues to be down and the favored edge continues to be up,
but the corner used to store the largest tile switches from the top right corner to being the top left.

rot0
—_—— ———

Figure 6: A common way of saving a game after a blunder is to switch orientations

mistake made changed to mir rot0 High

= j e i

Tiles

To get rid of the orientation ambiguity for the model while still allowing it the flexibility to recover
from blunders, I removed half of the rotations (the ones involving 90° and 270° rotations) from the
training dataset. Just for good measure, I also removed all instances of when I was forced to do the
“evil move” from all of the rotations. When I trained my model again on this new filtered data, I got
much better results.

7 Cat

You’re probably wondering where the cat comes in. There was “cat” in the title, you flipped to see
what it was about, and instead got the deranged ramblings of some loser with an unhealthy obsession
with 2048.

On July 18th around 10pm, my neighbor knocked on my door to tell me she heard what sounded like
kitten meowing noises coming from my car. When I went to check, I could hear this little creature
wailing from inside the car engine. I popped open the hood of my car, hoping to scoop him out, but
the noise startled him, and he bolted into the surrounding bushes.

Iregularly feed the neighborhood stray cats, and I know that all the strays in the area have been spayed
or neutered, so the kitten had likely been separated from his mother. I couldn’t bring myself to just
leave him to the elements, so I sat on my porch with a bowl of Churu and unsalted chicken broth to
try to lure him back out. He kept crying from the bushes and would occasionally dart under other cars
on the street, but he still wouldn’t come near me. By 6am, I was cold, exhausted, and realizing this
approach wasn’t going to work.

The neighbor who first alerted me has experience
trapping and rehabilitating stray cats. She’s
currently caring for an older cat and didn’t want
to risk exposing him to anything the kitten might
carry, but she kindly lent me one of her humane
cage traps. I put the Churu-broth bowl inside, set
the trap, then went inside to rest for a bit.

When I checked a few hours later, the food was
gone and I realized he was too small to trigger
the trap. To fix that, I placed a 3 Ib dumbbell on
the pressure plate, refreshed the food, and waited.

About an hour later — twenty-six hours after first
hearing him — I finally caught him.

Figure 7: Tiny critter caught in a

cartoonish cage trap

The next day, I brought him to a vet to make sure he was okay. They estimated he was about 8 weeks
old and weighed only 1.59 pounds — on the low side for his age. He also had infections in both eyes
and both ears, and was absolutely covered in fleas.

We started him on medication right away, and I kept him quarantined from my other cat while he
recovered. After a few weeks of treatment, the vet gave us the all-clear, and we finally introduced him
to my resident cat, and thankfully, they hit it off. Have some pictures of them together.

Figure 9: My other cat started

carrying him around the house by
the scruff

Figure 10: They play with
each other in a game almost
like “cat and mouse” It’s

s \) el o
very entertaining to watch {Z) -

them chase each other at full Figure 12: They like to sleep on

Figure 11: The kitten has been speed. each other all the time, using each
imitating my big cat, including other as pillows
napping poses

Absolutely adorable. I love them both so much.

What was I doing before this again?

Oh. Right. 2048. Anyways, let’s get back to it!

8 The model got too locked in

At this point, I had managed to collect about 25 games for training — much more than the 8 I started
with, but still a tiny dataset compared to what most machine learning models thrive on.* Around
then, I started to suspect that my model was overfitting — in other words, it was getting too good at
memorizing the training data instead of actually generalizing to new games. This is not ideal, because

*Even though 25 games isn’t a lot, I stopped because by then, I had already spent countless nights doing nothing but
playing 2048 for data collection. As much as I love the game, spending hours on end hunched over my laptop sliding
tiles around until the early hours of morning had me questioning every one of my life choices. At some point, I had to
stop, for the sake of both my sanity and my mental well-being.

it means the model performs well on board states it has already “seen” during training, but struggles
or completely fails when faced with new situations. To combat this, I added a dropout layer, which
is a layer that will randomly “turn off” some neurons so the model becomes more robust and is less

dependent on specific neurons. There’s a lot of improvement!

However, 1 still felt that
my model is overfitting. To
monitor this, after every epoch
(one full pass through the
training dataset), I have the
model play 100 games and
record the average score as
well as the distribution of
the highest tiles reached.
This way, I could track
performance over time and
identify when the model was
actually improving versus just
memorizing moves. At the
end of training, I stored
the weights from the epoch
with the best average score,
essentially picking the optimal
epoch rather than blindly
keeping the last one.

Average Score per Epoch

16000 4

14000 1

12000 4

10000 1

8000

6000

4000 1

80 1

60

40

204

12345678 910111213141516171819202122232425262728293031 32 33 34 3536 37 38 39 40 4142 43 44 4546 47 48 49 50

Maximum Tiles per Epoch

12345678 910111213141516171819202122232425262728293031 32 33 34 3536 37 3839 40414243 44 4546 47 48 49 50

Figure 13: Performance of the model as epochs increase

= Tile 0
- Tile 2
- Tiled
= Tiles
- Tile 16
- Tile 32
Tile 64
Tile 128
Tile 256
Tile 512
Tile 1024
Tile 2048
= Tile 4096
- Tile 8192
- Tile 16384
. Tile 32768
- Tile 65536

8.1 Brief interlude for the important graph that requires an entire subsection to

explain properly

I’ve been told that the bottom graph in Figure 13 is a bit difficult to understand, so I'll try to break
it down. Each bar shows the distribution of the highest tile reached during games played at that

epoch. The proportion of a bar that’s a given color corresponds to the proportion of games where the
corresponding tile was the maximum. For example, at Epoch 36, around 7% of games ended with 128
as the max tile, while approximately 30% of games reached 2048 or higher.

Another way to read the graph is as a kind of “failure rate”: the label on each bar tells you the percentage
of games that failed to reach a certain tile. So for Epoch 36, the model fails to reach 512 about 21% of
the time, and fails to reach 4096 92% of the time.

Here’s the pseudocode for how the graph is generated, hopefully this helps if my explanation wasn’t

clear enough:

for each epoch:
tile distributions = {0, 0, 0,...}
for each game in epoch:
get max_tile created in game
tile distributions[max tile] += 1

tile value = 271
show segment of length tile distributions[tile value],
with color corresponding to tile value

1
2
3
4
5
6 for 1 in range(17):
7
8
9
0

show bar with these segments

8.2 Back to the main content, where I re-attempt finetuning

Average Score per Batch

17000

16000

15000

14000

13000

12000

11000

10000

9000

100

80

60

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72

Maximum Tiles per Batch

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72

Figure 14: Performance of the model as batches increase

Imitation

Finetuned

9 The end?

Avg Score Comparison

With the finetuning that I had
attempted earlier, I noticed that
the average scores reached by the
model would dip a decent amount
before they improved, then they
would start worsening again.
Because of this, I essentially did
the same thing, where after each
batch (a small group of training
samples, in this case 25 episodes,
processed before updating the
model’s weights), I test it for 100
games, then track the average
scores. If no improvement is seen
after 40 batches, I reload from
the last best model, then continue
from there. If it reloads too
many times in a row (8), I stop
and end the training. Turns out,
this actually does lead to some
improvement!

Max Tiles Comparison

e Tile 32
Tile 64
Tile 128
Tile 256
Tile 512
Tile 1024
Tile 2048

e Tile 4096

. Tile 8192

1
60 80 100

Figure 15: Comparison between pure imitation and finetuned imitation

My model is still far from perfect, and to be honest I'm still not completely satisfied with its
performance. The finetuned version only reaches 2048 around 35% of the time, and since it was trained
with imitation learning, it struggles to recover once it makes a mistake. It also does badly if you drop

it mid-game where a human had been playing with a 90° or 270° rotation, since I excluded those
orientations from my training data. Looking ahead, I'd also like to experiment with models trained
entirely through reinforcement learning without any of my own gameplay data, and eventually

implement a DQN® into my model.

But alas, summer has come to an end, and with it, the end of my free time — and the end of my journal

entry. Those are projects for another day.

This is my first ever journal entry, and thus, I have no idea how to end this. Bye bye, thanks for reading,

etc. The end!!!

°I explained what a DQN is in a previous footnote. Are you not reading my footnotes?! My feelings are hurt.

	1 TL;DR: I made an AI that plays 2048
	2 Oops! I don't know what I'm doing
	3 What would I do? Let’s make the bot guess
	4 Forcing my model to see The Horrors
	5 Finetuning, but I am Woefully Uneducated
	6 Making my model stop being Evil
	7 Cat
	8 The model got too locked in
	8.1 Brief interlude for the important graph that requires an entire subsection to explain properly
	8.2 Back to the main content, where I re-attempt finetuning

	9 The end?

