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Abstract
I decided to teach a neural network to play 2048, despite knowing very little about 

how to actually do that. This work represents a comprehensive summer-long case study 

employing the experimental methodology colloquially known as “fuck around and 

find out,” formalized here as an iterative process of unstructured empirical exploration 

punctuated by intermittent bursts of ideas that appeared to me in my dreams. Despite 

training on a barely adequate dataset and a general disregard for best practices in 

machine learning, the project yielded a partially functional model that occasionally 

achieves non-embarrassing results. Future work will focus on replacing my uneducated, 

half-baked ideas with something vaguely resembling standard practice, as well as 

examining the effects of reading at least one relevant paper before implementation.

1 TL;DR: I made an AI that plays 2048
I’ve been mildly (okay, extremely) obsessed with 2048 since 

I was around ten years old. Funny tiles with big numbers 

itches my brain really good. Anyways, I’m studying computer 

science in college right now, and lately I’ve gotten interested in 

machine learning. So I figured, why not combine the two?

2 Oops! I don’t know what I’m doing
I got all hyped up about making a 2048 bot, but was quickly 

brought back to the crushing reality that: I’m a stupid little 

undergrad with a smooth little brain and do not know much 

about machine learning.

I started looking into some machine learning techniques, and 

the one that stood out to me most was imitation learning — 

basically, monkey see, monkey do. The reason? I honestly just

Figure 1: Author’s artistic

interpretation of this project1

as a horse. Unclear if

author has ever seen a horse.

wanted to avoid the headache of coming up with a way to “quantify” or “rank” how good a move 

is. With imitation learning, the model is given a bunch of state-action pairs (boards and their 

corresponding moves), and learns to predict the next action from a given state.

3 What would I do? Let’s make the bot guess
Thanks to doing some undergrad research assistant stuff, I know that usually training these types of 

models requires massive amounts of data. As in, hundreds or even thousands of games. So of course, 

my first instinct is to search online for some pre-existing datasets I can use.

1This project can be found and played at https://angelazqian.github.io/2048-AI. Hopefully by the time you read this 
paper, my models will be slightly more competent than they were when I wrote this.
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Figure 2: My highscore

from last summer

I did manage to find some datasets of 2048 games online, 

but after digging into the stats, it turns out those players 

don’t perform nearly as well as I do. For reference, Figure 2 

shows my highscore from last summer.

Not only did their games tend to end much earlier than 

mine, looking through their gameplay, a lot of their moves 

were less than strategic. And as the saying goes — if you 

want something done right, do it yourself.

I ended up writing a small Python script that worked as a 

keylogger. When run, it opens 2048 in my browser, and for 

every move I make, the script saves the board state along 

with the move into a JSON file. This also allowed me to 

undo a move if I slipped up, so I didn’t end up logging “bad 

moves” into the dataset. After collecting a staggering eight 

games (ok, not a lot lol but in my defense each game lasts

anywhere from half an hour to four hours and i didn’t have much free time since i was employed full-

time over the summer), it’s time to start training!

4 Forcing my model to see The Horrors
When looking into how to do imitation learning, the first method I came across was using Multilayer 

Perceptrons (MLPs).2 Essentially, it’s a type of neural network that processes multiple inputs, and 

returns a single output. This seemed like a good solution, as I could use the 16 grids of the game board 

as the input, then have it return the direction to move the tile in. I train it on the 8 games I have, load 

the model into the game and… yeah it sucks. Half the moves it was making were things I would never 

do. Back to the drawing board.

Maybe the problem lies with my data? When I play 2048, I tend to shove my big tiles in the top-right 

corner, favoring the upper edge, as shown in Figure 3. This would be reflected in the dataset, since all 

the collected games would follow the same pattern.

Since the model would have only learned to play well in the same orientation as me, when it loses that 

structure, it struggles to recover. That’s also a problem if someone wanted to try playing the game 

themself, then swap in the bot mid-way — their tile alignment may be different than mine. Even natural 

gameplay sometimes shifts the board’s orientation over time. I duplicated my data to represent all 8 

orientations (4 × 90° rotations, then 2 × for each mirror), as shown in Figure 4, and there is a slight 

improvement, but it’s still comically bad.

Figure 3: My preferred

orientation Figure 4: All 8 possible orientations of the board

2MLP is also the acronym for “My Little Pony,” which is rather fitting considering this is an entry in SIGHORSE. I 
thought this was hilarious so I have given my model a ponysona. See Figure 1.



After some thought, it occurred to me that treating each block in the grid as an independent parameter 

doesn’t communicate any positional information, which is extremely important in 2048. To address 

this, instead of treating the grid as 16 independent parameters, I started treating the grid as an image, 

essentially implementing a rudimentary form of computer vision. I accomplished this by switching 

from using MLPs to using a Convolutional Neural Network (CNN), which takes in a matrix input and 

uses convolutional layers to produce a single output. Much better results! But still not nearly as good 

as I had hoped.

5 Finetuning, but I am Woefully Uneducated
At this point I wanted to try finetuning my model, which means taking an existing trained model and 

continuing to train it so it becomes better adapted for the task. I looked into some common finetuning 

techniques, and the one that made the most sense to me was reinforcement learning through self-play, 

since 2048 is a single player game where you can objectively tell how good a game was through the 

final score. In reinforcement learning, each full playthrough of the game is called an episode, and after 

each episode the model updates based on a reward function, which is basically a formula that tells the 

model what counts as “good”. To encourage the model to be constantly improving instead of settling 

for an okay-ish score, I defined the reward function as the difference between the latest episode’s score 

and the average score of past episodes.

And… it gets worse. What.3

I’ll put this on the back burner for now and return to this later.

6 Making my model stop being Evil
The main issue about my model at this point is that it dies a lot early game, but if it somehow 

survives past a certain point, it starts performing well, which I think is because of rotation noise. This 

is because early on in the game, the model seems to execute moves from various rotations, as if it 

can’t decide which one to follow, leading me to remove the early gameplay from all rotations. I also 

noticed that when the board gains a large tile in a corner, it becomes ambiguous to the model as to 

which orientation it should follow. Considering that one of the main rule-of-thumb’s when playing 

2048 is that you should pick a direction, label it as “evil” and avoid it at all costs, this becomes

a bit of a problem. For example, if the 

largest tile is placed in the top-right corner, it

could follow the orientation that favors the upper 

edge, designates down to be the “evil move”, and 

mostly play moves up, right, and left. However, 

it could also follow the orientation that favors the 

right edge, designates left as the “evil move”, 

and mostly play moves right, down, and up. 

Following this logic, all 4 directions may seem like 

reasonable moves to the model, which is very bad.

Figure 5: Ambiguity leads to all four

directions being possible “good moves”

When playing 2048, it is good to choose one orientation and stick with it. However, sometimes a 

mistake happens, and you are forced to switch orientations in order to recover. The most common type 

of orientation change that happens mid-game is when you keep the same “evil move” and continue 

3In the writing of this journal entry, I found out that my mistake was baking a moving baseline into the reward 
function, which makes reward non-stationary. What I was previously using as the reward function was actually 
something called the advantage (essentially how much better an action was than what the model usually expects). 
However, that should be handled inside the learning algorithm, not included in the reward itself. What I should have 
used here was a Deep Q-Network (DQN), which is designed to estimate long-term value for actions in each game state 
and updates the model more reliably.



to favor the same edge, but switch to the other corner on the edge to keep the largest tiles. As an 

example, in Figure 6, the “evil move” continues to be down and the favored edge continues to be up, 

but the corner used to store the largest tile switches from the top right corner to being the top left.

Figure 6: A common way of saving a game after a blunder is to switch orientations

To get rid of the orientation ambiguity for the model while still allowing it the flexibility to recover 

from blunders, I removed half of the rotations (the ones involving 90° and 270° rotations) from the 

training dataset. Just for good measure, I also removed all instances of when I was forced to do the 

“evil move” from all of the rotations. When I trained my model again on this new filtered data, I got 

much better results.

7 Cat
You’re probably wondering where the cat comes in. There was “cat” in the title, you flipped to see 

what it was about, and instead got the deranged ramblings of some loser with an unhealthy obsession 

with 2048.

On July 18th around 10pm, my neighbor knocked on my door to tell me she heard what sounded like 

kitten meowing noises coming from my car. When I went to check, I could hear this little creature 

wailing from inside the car engine. I popped open the hood of my car, hoping to scoop him out, but 

the noise startled him, and he bolted into the surrounding bushes.

I regularly feed the neighborhood stray cats, and I know that all the strays in the area have been spayed 

or neutered, so the kitten had likely been separated from his mother. I couldn’t bring myself to just 

leave him to the elements, so I sat on my porch with a bowl of Churu and unsalted chicken broth to 

try to lure him back out. He kept crying from the bushes and would occasionally dart under other cars 

on the street, but he still wouldn’t come near me. By 6am, I was cold, exhausted, and realizing this 

approach wasn’t going to work.

Figure 7: Tiny critter caught in a

cartoonish cage trap

The neighbor who first alerted me has experience 

trapping and rehabilitating stray cats. She’s 

currently caring for an older cat and didn’t want 

to risk exposing him to anything the kitten might 

carry, but she kindly lent me one of her humane 

cage traps. I put the Churu-broth bowl inside, set 

the trap, then went inside to rest for a bit.

When I checked a few hours later, the food was 

gone and I realized he was too small to trigger 

the trap. To fix that, I placed a 3 lb dumbbell on 

the pressure plate, refreshed the food, and waited. 

About an hour later — twenty-six hours after first 

hearing him — I finally caught him.



The next day, I brought him to a vet to make sure he was okay. They estimated he was about 8 weeks 

old and weighed only 1.59 pounds — on the low side for his age. He also had infections in both eyes 

and both ears, and was absolutely covered in fleas.

We started him on medication right away, and I kept him quarantined from my other cat while he 

recovered. After a few weeks of treatment, the vet gave us the all-clear, and we finally introduced him 

to my resident cat, and thankfully, they hit it off. Have some pictures of them together.

Figure 8: Their first meeting! Figure  9: My other cat started 

carrying him around the house by 

the scruff

Figure  10: They play with 

each other in a game almost 

like “cat and mouse.” It’s 

very entertaining to watch 

them chase each other at full 

speed.Figure 11: The kitten has been 

imitating my big cat, including 

napping poses

Figure  12: They like to sleep on 

each other all the time, using each 

other as pillows

Absolutely adorable. I love them both so much.

What was I doing before this again?

Oh. Right. 2048. Anyways, let’s get back to it!

8 The model got too locked in
At this point, I had managed to collect about 25 games for training — much more than the 8 I started 

with, but still a tiny dataset compared to what most machine learning models thrive on.4 Around 

then, I started to suspect that my model was overfitting — in other words, it was getting too good at 

memorizing the training data instead of actually generalizing to new games. This is not ideal, because 

4Even though 25 games isn’t a lot, I stopped because by then, I had already spent countless nights doing nothing but 
playing 2048 for data collection. As much as I love the game, spending hours on end hunched over my laptop sliding 
tiles around until the early hours of morning had me questioning every one of my life choices. At some point, I had to 
stop, for the sake of both my sanity and my mental well-being.



it means the model performs well on board states it has already “seen” during training, but struggles 

or completely fails when faced with new situations. To combat this, I added a dropout layer, which 

is a layer that will randomly “turn off” some neurons so the model becomes more robust and is less 

dependent on specific neurons. There’s a lot of improvement!

However, I still felt that 

my model is overfitting. To 

monitor this, after every epoch 

(one full pass through the 

training dataset), I have the 

model play 100 games and 

record the average score as 

well as the distribution of 

the highest tiles reached. 

This way, I could track 

performance over time and 

identify when the model was 

actually improving versus just 

memorizing moves. At the 

end of training, I stored 

the weights from the epoch 

with the best average score, 

essentially picking the optimal 

epoch rather than blindly 

keeping the last one. Figure 13: Performance of the model as epochs increase

8.1 Brief interlude for the important graph that requires an entire subsection to 

explain properly
I’ve been told that the bottom graph in Figure 13 is a bit difficult to understand, so I’ll try to break 

it down. Each bar shows the distribution of the highest tile reached during games played at that 

epoch. The proportion of a bar that’s a given color corresponds to the proportion of games where the 

corresponding tile was the maximum. For example, at Epoch 36, around 7% of games ended with 128 

as the max tile, while approximately 30% of games reached 2048 or higher.

Another way to read the graph is as a kind of “failure rate”: the label on each bar tells you the percentage 

of games that failed to reach a certain tile. So for Epoch 36, the model fails to reach 512 about 21% of 

the time, and fails to reach 4096 92% of the time.

Here’s the pseudocode for how the graph is generated, hopefully this helps if my explanation wasn’t 

clear enough:

1 for each epoch:

  tile_distributions = {0, 0, 0,...}

  for each game in epoch:

    get max_tile created in game

    tile_distributions[max_tile] += 1

  for i in range(17):

    tile_value = 2^i

    show segment of length tile_distributions[tile_value], 

      with color corresponding to tile_value

  show bar with these segments

2

for each epoch:

  tile_distributions = {0, 0, 0,...}

  for each game in epoch:

    get max_tile created in game

    tile_distributions[max_tile] += 1

  for i in range(17):

    tile_value = 2^i

    show segment of length tile_distributions[tile_value], 

      with color corresponding to tile_value

  show bar with these segments

3

for each epoch:

  tile_distributions = {0, 0, 0,...}

  for each game in epoch:

    get max_tile created in game

    tile_distributions[max_tile] += 1

  for i in range(17):

    tile_value = 2^i

    show segment of length tile_distributions[tile_value], 

      with color corresponding to tile_value

  show bar with these segments

4

for each epoch:

  tile_distributions = {0, 0, 0,...}

  for each game in epoch:

    get max_tile created in game

    tile_distributions[max_tile] += 1

  for i in range(17):

    tile_value = 2^i

    show segment of length tile_distributions[tile_value], 

      with color corresponding to tile_value

  show bar with these segments

5

for each epoch:

  tile_distributions = {0, 0, 0,...}

  for each game in epoch:

    get max_tile created in game

    tile_distributions[max_tile] += 1

  for i in range(17):

    tile_value = 2^i

    show segment of length tile_distributions[tile_value], 

      with color corresponding to tile_value

  show bar with these segments

6

for each epoch:

  tile_distributions = {0, 0, 0,...}

  for each game in epoch:

    get max_tile created in game

    tile_distributions[max_tile] += 1

  for i in range(17):

    tile_value = 2^i

    show segment of length tile_distributions[tile_value], 

      with color corresponding to tile_value

  show bar with these segments

7

for each epoch:

  tile_distributions = {0, 0, 0,...}

  for each game in epoch:

    get max_tile created in game

    tile_distributions[max_tile] += 1

  for i in range(17):

    tile_value = 2^i

    show segment of length tile_distributions[tile_value], 

      with color corresponding to tile_value

  show bar with these segments

8

for each epoch:

  tile_distributions = {0, 0, 0,...}

  for each game in epoch:

    get max_tile created in game

    tile_distributions[max_tile] += 1

  for i in range(17):

    tile_value = 2^i

    show segment of length tile_distributions[tile_value], 

      with color corresponding to tile_value

  show bar with these segments

9

for each epoch:

  tile_distributions = {0, 0, 0,...}

  for each game in epoch:

    get max_tile created in game

    tile_distributions[max_tile] += 1

  for i in range(17):

    tile_value = 2^i

    show segment of length tile_distributions[tile_value], 

      with color corresponding to tile_value

  show bar with these segments

10

for each epoch:

  tile_distributions = {0, 0, 0,...}

  for each game in epoch:

    get max_tile created in game

    tile_distributions[max_tile] += 1

  for i in range(17):

    tile_value = 2^i

    show segment of length tile_distributions[tile_value], 

      with color corresponding to tile_value

  show bar with these segments



8.2 Back to the main content, where I re-attempt finetuning

Figure 14: Performance of the model as batches increase

With the finetuning that I had 

attempted earlier, I noticed that 

the average scores reached by the 

model would dip a decent amount 

before they improved, then they 

would start worsening again. 

Because of this, I essentially did 

the same thing, where after each 

batch (a small group of training 

samples, in this case 25 episodes, 

processed before updating the 

model’s weights), I test it for 100 

games, then track the average 

scores. If no improvement is seen 

after 40 batches, I reload from 

the last best model, then continue 

from there. If it reloads too 

many times in a row (8), I stop 

and end the training. Turns out, 

this actually does lead to some 

improvement!

Figure 15: Comparison between pure imitation and finetuned imitation

9 The end?
My model is still far from perfect, and to be honest I’m still not completely satisfied with its 

performance. The finetuned version only reaches 2048 around 35% of the time, and since it was trained 

with imitation learning, it struggles to recover once it makes a mistake. It also does badly if you drop 

it mid-game where a human had been playing with a 90° or 270° rotation, since I excluded those 

orientations from my training data. Looking ahead, I’d also like to experiment with models trained 

entirely through reinforcement learning without any of my own gameplay data, and eventually 

implement a DQN5 into my model.

But alas, summer has come to an end, and with it, the end of my free time — and the end of my journal 

entry. Those are projects for another day.

This is my first ever journal entry, and thus, I have no idea how to end this. Bye bye, thanks for reading, 

etc. The end!!!

5I explained what a DQN is in a previous footnote. Are you not reading my footnotes?! My feelings are hurt.
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